
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org

Entity Authentication and
Session Management

SecAppDev 2013

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

What is Entity Authentication?

What is Authentication

 Verification that an entity is who it claims to be.

Difference between Authentication and Authorisation

 Authorisation is checking if an entity has privileges to perform a
function/action whilst Authentication is verification
of identification.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Entity Authentication Basics

There are 3 methods of identifying an individual

 Something you have – e.g. token, certificate, cell

 Something you are – e.g. biometrics

 Something you know – e.g. password.

For highly sensitive applications multifactor authentication can
be used

Financial services applications are moving towards “stronger
authentication”

Google/Facebook/World-Of-Warcraft support consumer-centric multi-
factor authentication

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

What is a Authentication Session?

A session identifier (ID) is supplied to the entity once they are
authenticated.

This is a random, unique & difficult to guess string.

 ASEIUHF849J283JE874GSJWOD2374DDEOFEFK93423H

It is used by the entity on any subsequent communication to identify
the source of the messages

It is valid for a finite period of time

We need a session ID as HTTP is stateless, it has no memory

The session ID is a “key” to a portion of memnory on the server
where your individual data and/or state can be stored

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

1 Login form

2 Submit Credentials

3 Create Session

4 Do cool things

5 Potential Re-Authentiation

6 Absolute Timeout

7 Logoff or Idle Timeout

8 Invalidate Session

Entity Authentication Workflow

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Session Identifiers

Once a user has proven their identity, session management
functionality is employed

Each request sent to the server contains an identifier that the server
uses to associate requests authenticated users

The session ID is all that is needed to prove authentication for the rest
of the session

A stolen active session ID is similar to having your credentials stolen

Session ID’s are typically passed in a HTTP Cookie

In general, this is transparent to the developer and is handled by the
web framework

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Authentication Dangers

Passwords
& PIN’s

 Plaintext or poor password storage
 Subject to brute-force attack
 Weak Password Policy
 Password reuse

Username
Harvesting  Registration page makes this easy

Weak
"Forgot
Password”
feature

 Reset links sent over email

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

More Authentication Dangers

Weak
"Change
Password”
feature

 Does not require existing password

 Access control weakness allows reset of other users
password

Session
Management
Dangers

 Session Fixation

 Weak or Predictable Session
 Session Hijacking via XSS

 Session Hijacking via network sniffing
 Lack of idle and absolute session timeout

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Credential Defenses

Sensitive or should require the user to provide proof of identity

 Login

 Password Reset

 Shipping to a new address

 Changing email address

 Significant or anomalous transactions

 Helps minimize CSRF and session hijacking attacks

Implement server-side enforcement of password syntax and
strength (i.e. length, character requirements, etc)

 Tough balance, overly strong policy is bad

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Login and Session Defenses

Send all credentials and session id’s over well configured HTTPS/
SSL/TLS

 Helps avoid session hijacking via network sniffing

Develop generic failed login messages that do not indicate whether
the user-id or password was incorrect

 Minimize username harvesting attack

Enforce account lockout after a pre-determined number of failed
login attempts

 Stops brute force threat

 Account lockout should trigger a notification sent to application
administrators and should require manual reset (via helpdesk)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

More Session Defenses

Ensure that Session ID’s are protected in a HTTP Cookie

 Secure, HTTP Only, limited path

Generate new session ID at login time

 To avoid session fixation threat

Session Timeout (sessions must “expire”)

 Idle Timeout due to inactivity

 Absolute Timeout

 Logout Functionality

 Will help minimize session hijacking threat

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cookie Options

The Set-Cookie header uses the following syntax:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;
domain=DOMAIN_NAME; secure; httponly;

Name

 The name of the cookie parameter

Value

 The parameter value

Expires

 The date on which to discard the cookie (if
absent, the cookie not persistent and is
discarded when the browser is closed

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cookie Security Defenses

Path The path under which all requests should receive the
cookie. “/” would indicate all paths on the server

Domain

The domain for which servers should receive the cookie
(tail match). For example, my.com would match all
hosts within that domain (www.my.com, test.my.com,
demo.my.com, etc.)

Secure Indicates that the cookie should only be sent over
HTTPS connections

HTTPOnly Helps ensure Javascript can not manipulate the cookie.
Good defense against XSS.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cookie Security Defenses

Avoid storing sensitive data in cookies

Always set the “secure” cookie flag for HTTPS cookies to prevent
transmission of cookie values over unsecured channels

Any sensitive cookie data should be encrypted if not intended to be
viewed/tampered by the user. Persistent cookie data not intended
to be viewed by others should always be encrypted.

Cookie values susceptible to tampering should be protected with
an HMAC appended to the cookie, or a server-side hash of the
cookie contents (session variable)

Avoid using persistent cookies

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Logout/Session Defenses

Give users the option to log out of the application and make the
option available from every application page

The user’s session should be terminated using a method such as
session. abandon(), session. invalidate() during logout

JavaScript can be used to force logout during window close event

When clicked, the logout option should prevent the user from
requesting subsequent pages without re-authenticating to the
application

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Password Defenses

 Disable Browser Autocomplete

 <form AUTOCOMPLETE="off”>
 <input AUTOCOMPLETE="off”>

 Only send passwords over HTTPS POST

 Do not display passwords in browser
 Input type=password

 Do not display passwords in HTML document

 Store password on server via one-way encryption

 Hash password
 Use Salt

 Iterate Hash many times
 BCRYPT/PBKDF2

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Password Storage Code Sample
public String hash(String plaintext, String salt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(salt.getBytes(encoding));
 digest.update(plaintext.getBytes(encoding));
 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Forgot Password Secure Design

Require identity questions

 Last name, account number, email, DOB
 Enforce lockout policy

Ask one or more good security questions

 http://www.goodsecurityquestions.com/

Send the user a randomly generated token via out-of-band communication

 email, SMS or token

Verify code in same web session

 Enforce lockout policy

Change password

 Enforce password policy

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Encryption in Transit (TLS)

Authentication credentials and session identifiers must me be
encrypted in transit via HTTPS/SSL

 Starting when the login form is rendered

 Until logout is complete

 All other sensitive data should be protected via HTTPS!

https://www.ssllabs.com free online assessment of public facing
server HTTPS configuration

https://www.owasp.org/index.php/Transport Layer Protection Cheat
Sheet for HTTPS best practices

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Federated Identity and SAML

XML-based identity management between different businesses

Centralized Authentication Authority

Single Sign On / Single Logout

Assertions and Subjects

Authentication Assertion Types

Attribute Assertion Types

Entitlement Assertion Types

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Session Management Code Review Challenge

Challenge!

Examine the following pseudo code and
identify any issues with this session
management mechanism

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Pseudo Code: Session Creation,
Authorization, Session Validation

ROW CODE FIX? Y/N

1 BROWSER requests access to “Account Summary” from WEBSERVER

2 WEBSERVER checks whether the session is authenticated

3 IF session is authenticated:

4 Send “Account Summary” page to BROWSER

5 RETURN

6 IF session is NOT authenticated:

7 WEBSERVER grabs USERNAME posted by BROWSER

8 WEBSERVER asks DATABASE (“Select * from AuthTable where Username = ‘%s’”, USERNAME);

9 IF DATABASE returns no users:

10 WEBSERVER sends error message to BROWSER (“Invalid User Name %s”, USERNAME);

11 RETURN

12 ELSE

13 WEBSERVER grabs PASSWORD posted by BROWSER

14 For each user returned by DATABASE:

15 IF user’s password equals PASSWORD:

16 Authenticate session

17 Generate Session ID:

18 Increment previous Session ID by 1

19 Store Session ID

20 Add Session ID to user’s cookie

21 IF no users have a password equal to PASSWORD:

22 WEBSERVER sends error message to Browser (“Invalid password %s for username %s”, PASSWORD, USERNAME);

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Solution

1 BROWSER requests access to “Account Summary” from WEBSERVER

2 WEBSERVER checks whether the session is authenticated

3 IF session is authenticated:

4 Send “Account Summary” page to BROWSER

5 RETURN

6 IF session is NOT authenticated:

7 WEBSERVER grabs USERNAME and PASSWORD posted by BROWSER

8 WEBSERVER asks DATABASE (“Select * from AuthTable where Username = ‘%s’ and Password =
‘%s’”, USERNAME, PASSWORD);

9 IF DATABASE returns no users or more than one user:

10 WEBSERVER sends error message to BROWSER (“Invalid User Name or Password”);

11 RETURN

12 ELSE (DATABASE has returned exactly one user)

13 Authenticate session

14 Generate Session ID:

15 WEBSERVER generates secure Session ID

16 Store Session ID

17 Add Session ID to user’s cookie

